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Chapter 7 

Incompressible Flow Solutions 
 

Incompressible flows are by far the most common type of flows encountered in engineering 

problems. They are different than compressible flows mainly due to the missing equation of state. 

Density is not an unknown and pressure does not have any thermodynamic meaning. In an 

incompressible flow the role of pressure is to adjust itself immediately to the changes in a flow field 

so that the velocity is divergence free at all times. These differences make the numerical solution of 

incompressible flows more challenging compared to compressible flows, not only for FEM, but for 

other numerical techniques as well. 

In CFD literature mass and momentum conservation equations together are called Navier-Stokes    

(N-S) equations. N-S equations are simplified into Stokes equations when the inertia effects are 

negligible as in the case of creeping flows. In this chapter first the FE formulation of Stokes equations 

will be presented, followed by the extension to N-S equations. Formulation of heat transfer problems 

for which the energy equation also needs to be solved will be done in the next chapter. 

7.1 Primitive Variable Formulation of Incompressible Flows 

 

Velocity components and pressure are known as the primitive variables. Although they are not the 

only choice of variables that can be used to formulate incompressible flows, they are the most 

commonly used ones. N-S equations in primitive formulation are given as 

  ⃗ 

  
   ⃗     ⃗   

 

 
     

 

 
   ⃗                                                      

   ⃗                                                                                

where     is the pressure,   ⃗  is the velocity vector,   and     are the constant density and dynamic 

viscosity of the fluid and    is the body force per unit mass. This velocity and pressure based 

formulation is also known as mixed formulation. 

The most common alternative for primitive variable formulation is the stream function-vorticity 

formulation, in which the pressure is no longer an unknown. Although it has computational 

advantages over primitive formulation in 2D, its extension to 3D problems and specification of the 

BCs is problematic. 

N-S equations are nonlinear due to the inertial term. For very low Reynolds number cases (low speed 

flows and/or highly viscous fluids) this term is negligibly small compared to the viscous term and it 

drops from the equation. The resulting set of equations is linear and called Stokes Equations. In the 
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coming sections we’ll first consider GFEM formulation of linear Stokes equations and then we'll 

include the nonlinear term. 

Equations (7.1) and (7.2) should be supported by initial and boundary conditions. A divergence free 

velocity distribution should be provided as an initial condition. Boundary conditions can be of two 

types, specifying velocity components or specifying boundary traction as given below 

 elocit    iric let                      ⃗   ⃗              on                                               

 raction   eumann                    ⃗   ̿            on                                               

where  ⃗  is the unit outward normal vector of the boundary,  ̿ is the stress tensor which is the sum of 

normal and shear stresses and    is the traction force applied by the boundary on the fluid. 

For fluid flows boundary condition at a solid wall is known as no slip BC, i.e. normal and tangential 

velocity components of the fluid are equated to those of the solid wall. For the common case of a 

stationary wall, both velocity components are equated to zero. No pressure BC is specified at solid 

walls. Inflow boundaries are treated in a similar way as solid walls, i.e. EBCs for velocity components 

are specified and no BC for pressure is necessary. Specification of BCs at outflow boundaries is not a 

completely resolved issue and it is possible to see different practices in the literature. Traction type 

BC should be specified at outflow boundaries, but the difficulty is that the required tractions are 

usually not known at an outflow boundary. It is common to see the use of simpler BCs at outflow 

boundaries, such as the specification of a constant pressure or the “do not ing” approac . 

7.2 GFEM of 2D Stokes Equations in Primitive Variables 

 
N-S equations are nonlinear due to the convective term of Eqn (7.1). It is easier to start with the 

Stokes equation for which this term drops. 2D, steady Stokes equations written in the Cartesian 

coordinate system are as follows 

 

  Momentum         (
   

   
 

   

   )  
  

  
                                                    

 

  Momentum         (
   

   
 

   

   )  
  

  
                                                    

 

 ontinuit            
  

  
 

  

  
                                                                                     

where   and   are the  - and  - components of the velocity vector and    and    are the 

components of the body force vector. It is possible to put Eqns (7.4a) and (7.4b) into the following 

form by the help of the continuity equation 
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which is more suitable to derive the weak form of the Stokes equations, as far as the physical 

meaning of the SVs are considered. To obtain the weak form of the Stokes equations, we first form 

the weighted integral forms of Eqns (7.5a), (7.5b) and (7.4c) and apply integration by parts to the 

terms of the momentum equation with second derivatives as well as the pressure terms so that 

physically meaningful SVs can be obtained. The resulting elemental weak form is 
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Minus sign is added to the continuity equation on purpose, in order to get a symmetric stiffness 

matrix at the end. To make  the formulation more general different weight functions (      and   ) 

are used for each equation. Boundary integrals that are the by-products of integration by parts 

include the following traction terms 

 

   (  
  

  
  )     (

  

  
 

  

  
)                                                        

    (
  

  
 

  

  
)   (  

  

  
  )                                                        

 

where    and    are the Cartesian components of the unit outward normal vector at a boundary. 

These tractions are the secondary variables of the N-S equations. Corresponding primary variables 

are the two velocity components,   and  , which can be associated with the  - and  - components 

of the momentum equation. The remaining unknown, which is pressure, can be associated with the 

continuity equation, however it does not even appear in this equation. No integration by parts is 

applied to the continuity equation and there is no boundary integral for it. For incompressible Stokes 

equations pressure is neither a primary nor a secondary variable by itself, but it appears in the SVs 

associated with the momentum equations. This behavior of pressure creates a major challenge in the 

numerical solution of incompressible flows. 

 

Again for t e generalit  of t e formulation we’ll assume t at different order of polynomials are used 

to approximate velocity and pressure unknowns, i.e. 
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where NENv and NENp are the number of velocity and pressure nodes over an element, which can be 

different as shown in Figure 7.1. 
 

 

 

 

 

 

 

Figure 7.1 Typical quadrilateral and triangular elements with NENv   NENp. Circles and dots 

represent the points at which velocity components and pressure are stored, respectively. 

  

If NENv and NENp are different, then different shape functions need to be used for velocity 

components and pressure, and they are denoted by   and   ̂. In GFEM formulation weight functions 

are selected to be the same as the shape functions as shown below 
 

    ̂                                                                                    

Substituing Eqns (7.8) and (7.9) into (7.6) we get 
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These elemental equations can be written in the following compact form 

 

[ ]  { }  { }                                                                      

which can be detailed as follows 
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At this point it is important to consider the following remarks 

 

 For an element with NENv velocity nodes and NENp pressure nodes, there are totally                 

NEU = 2*NENv + NENp elemental unknowns. Therefore the size of [ ]  is NEU   NEU. For 

such an element, sizes of elemental sub-matrices and sub-vectors are 

 

    { }     { }    :   NENv   1 

    { }     :   NENp   1 

    [   ]      [   ]     [   ]     [   ] :   NENv   NENv 

    [   ]      [   ]   :   NENv   NENp 

    [   ]      [   ]   :   NENp   NENv 

    [   ]    :   NENp   NENp 

 

 [   ] is a zero matrix. Therefore the elemental system has zero entries on its main diagonal. 

Similarly the assembled stiffness matrix will also have zeros on its main diagonal. 
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 The elemental system, and therefore the assembled global system is symmetric (This 

symmetry will be lost when nonlinear terms are added in the N-S equations). 

 

 If all boundary conditions are of Dirichlet type, i.e. only velocity components are specified, 

pressure can be determined only up to an arbitrary constant because in the DEs (Eqn (7.1)) it 

is only present by its gradient. In such a case, in order to define the pressure uniquely, the 

usual practice is to provide the value of pressure at one point of the flow domain or impose 

an average pressure value for the whole flow domain. 

 

 Pressure is not a primary variable and its derivatives do not appear in the in the weak form of 

the problem (Eqn (7.6)). Therefore it is possible to approximate pressure to be discontinuous 

across neighboring elements (using a single pressure node at the center of the element), 

which is a common choice. 

 

 Unsteady terms can be included using semi-discrete formulation discussed in Chapter 4. 

Resultant mass matrix will be (This will be discussed later. Remove it from here) 
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7.3 Numerical Challenges of Solving Incompressible Flow Equations 

 
Three main difficulties for the numerical solution of incompressible flow equations are 

 

 Mixed formulation presented in the previous section resulted in a global stiffness matrix (and 

global mass matrix for unsteady problems) with zeros on the main diagonal. Although these 

global systems can be solved using direct methods (such as Gauss Elimination or LU 

decomposition) with proper pivoting, iterative methods are preferred for large problems due 

to eficiency concerns. Unfortunately, iterative techniques become ineffective due to the 

presence of zeros on the diagonal. 

 

 Similar to the advection diffusion equation discussed in the previous chapter, for convection 

domainated flows, i.e. high Reynolds number flows, GFEM may provide results that have 

unphysical (spurious) node-to-node oscillations, especially when used with a not fine enough 

mesh. Literature is full of various stabilization techniques such as Streamline Upwind Petrov 

Galerkin (SUPG), Galerkin Least Squares (GLS), Pressure Stabilized Petrov Galerkin (PSPG), 

etc. to overcome this. These stabilization techniques in general modify GFEM so that there 

are no longer zero entries on the main diagonal of the algebraic system of equations, which 

is an additional benefit of using them. 

 

 When primitive variables are used, the algebraic system obtained from GFEM should satisfy 

an extra compatibility condition, known as Ladyzhenskaya-Babuska-Brezzi (LBB) condition or 
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the inf-sup condition so that unphysical node-to-node pressure oscillations (checkerboard 

pressure distribution) can be avoided. According to the LBB condition pressure 

approximation must be at least one order lower than the velocity approximation over an 

element (NENp should be less than NENv). There are only a limited number of LBB-stable 

elements, i.e. elements that are known to satisfy the LBB condition. 

 

Some commonly used  elements that satisfy the LBB condition, i.e. LBB-stable elements, are 

shown in Table 7.1. Although they provide good results, the use of these elements bring 

complications to programming. Researchers have spent a lot of effort to come up with 

formulations that allow the use of equal order approximation for both velocity and pressure. 

Interestingly, stabilization techniques that are used to obtain oscillation free results for highly 

convective flows are also known to be useful in circumventing the LBB condition (being able 

to use elements that do not satisfy the LBB condition), which can be seen as the third 

motivation for using them. 

 

Note that the checkerboard pressure distribution problem is also seen in Finite Difference 

and Finite Volume Mehods, for which people commonly seek solutions by using staggered 

(not colocated) grids, i.e. grids where pressures and velocities are calculated at different 

points. 

7.4 GLS Stabilization of Stokes Equations for Linear Triangles and Quadrilaterals 

 

Similar to AD equation discussed in previous chapters, Galerkin Least Squares (GLS) or similar residual 

based stabilization techniques can be applied to Stokes and N-S equations, too [2]. These stabilized 

formulations have three benefits; i) they enable non-oscillatory solution of high Reynolds number 

problems with reasonably fine meshes, ii) they enable the use of equal order interpolation for 

velocity and pressure, i.e. NENv = NENp, without a checkerboard pressure field, iii) they get rid of the 

zero diagonal entries of the global system.  

As discussed in Chapter 6, GLS adds the following stabilization term to the weak form of the problem 

G S Sta ili ation         ∫           ( ⃗   )  

 

  

                                               

where the residual   is based on the momentum equation given by 

   
 

 
     

 

 
   ⃗                                                                      

and the   operator for Stokes equation is 

      
 

 
      

 

 
                                                                   

where   is a vector combination of weight functions     and    . 
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Table 7.1 Incomplete list of LBB-stable quadrilateral and triangular elements. Black circles represent 

velocity nodes, white circles represent pressure nodes [1]. 

 

 

     element (Taylor Hood element) 

Continuous biquadratic velocity 

Continuous bilinear pressure 

NENv = 9, NENp = 4 

  

      element 

Continuous biquadratic velocity 

Discontinuous pressure 

NENv = 9, NENp = 4 

 

 
  

      element 

Continuous biquadratic velocity 

Discontinuous pressure 

NENv = 9, NENp = 3 

 

  

 

     (Taylor Hood) element 

Continuous quadratic velocity 

Continuous linear pressure 

NENv = 6, NENp = 3 

 

 
  

 

  
    (Mini) element 

Continuous quadratic velocity + cubic bubble  

Discontinuous pressure 

NENv = 4, NENp = 3 

 

 
  

 

  
     (Crouzeix-Raviart)element 

Continuous quadratic velocity + cubic bubble 

Discontinuous linear pressure 

NENv = 7, NENp = 3 
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Using Eqns (7.16) and (7.17) in Eqn (7.15) the contribution of the GLS stabilization integral to the 

momentum and continuity equations will be as follows 

G S contri ution to   momentum         ∫            (       
  

  
    )    

 

  
                    

G S contri ution to   momentum         ∫            (       
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G S contri ution to continuti                ∫           (      ⃗        )   
 

  
                           

 

If the velocity approximation over the element is linear, i.e. if 3-node triangular or 4-node 

quadrilaterals are used for velocity approximation, then the GLS contribution to momentum 

equations given by (7.18a) and (7.18b) will vanish because the terms with second derivatives, i.e.  

     and      will be zero. Also    ⃗  term will be zero for the GLS contribution to the continuity 

equation and this integral will simplify to 

G S contri ution to continuit            ∫           (      )   
 

  
                                          

 

Subtracting (not adding because the continuity equation is already multiplied with a minus sign) Eqn 

(7.19) from Eqn (7.6c) we get the following modified weak form of the continuity equation 
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where GLS contributions are shown in red. These extra terms changes     and    of Eqn (7.13) as 

follows (both of which were equal to zero for GFEM) 
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As mentioned previously the main contribution of GLS is the one to    , which is useful in getting rid 

of the zero diagonal entries of the global system. Although there is no unique way of selecting the 

stabilization parameter  , it is usually taken to be 

  
 

 

  
 

  
                                                                              

where    is a measure of element length, which can be taken as the diameter of the circumcircle for 

triangular elements or the largest face or diagonal length for quadrilateral elements. 

It is very important to note that GLS is a residual based stabilization technique, i.e. if the original 

GFEM solution is already good enough (free from unphysical oscillations) than the contribution of 
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GLS will be negligible. It is also important to note that the stabilization parameter   is a function of 

element size and as the mesh is refined it tends to zero, i.e. the effect of GLS stabilization disappears 

as the mesh is refined. 

7.5 Sample Stokes Solution – Lid-Driven Cavity Problem 

 

T e classical “lid-driven cavity” benchmark problem is sketched in Figure 7.2. The flow is inside a 

square domain (Cavity) with a side length of    . Left, right and bottom walls of the cavity are 

stationary, whereas the top wall (lid) is moving to the right with a speed of   .  Motion of the lid puts 

the fluid inside the cavity into motion and a large clockwise rotating vortex forms, with possible 

smaller vortices at the bottom and top left corners. Governing similarity parameter is the Reynolds 

number (      ) and by selecting proper values for the lid velocity, density and viscosity, the 

problem can be studied at any desired Reynolds number. Stokes solutions of this section are 

performed using     ,     and    , which corresponds to      of a Navier-Stokes solution 

(Actually when solving the Stokes equations it is not appropriate to mention about the Reynolds 

number, because Stokes equations correspond to the limiting case of zero Reynolds number, which is 

only an idealization, but a valid one for creeping flows). 

 

This is a popular benchmark problem for flow solvers due its simple geometry and BCs. However it 

has one inherent difficulty; the singularities at the top corners, where boundaries with different 

velocities meet. Fine enough elements should be used at the top corners, and actually close to all the 

walls, to obtain accurate results. 

 

As discussed before, since all BCs are of Dirichlet type, pressure at one point of the flow domain, in 

this case the lower left corner, is fixed to be zero. Simulations are performed using a mesh of 400 

equi-sized, square elements, as shown in Figure 7.2. Four point Gauss Quadrature integration is used 

for all solutions.  

 

 
 

Figure 7.2 Definiton of the lid-driven cavity problem and the uniform mesh of 400 quadrilateral 

elements 

 

x 

y 

u=0  ,  v=0 

u=0  ,  v=0 u=0  ,  v=0 

u=Uo  ,  v=0 

p=0 
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The first solution is obtained with LBB-unstable      quadratic elements, which use linear 

approximations for both velocity and pressure, i.e. NENv = NENp = 4. Solving the global system of 

equations using the backslash operator of MATLAB, which uses a direct solver, gives a warning of 

“Matrix is close to singular or badly scaled. Results may be inaccurate”, but a solution can still be 

obtained. Streamlines and three-dimensional pressure contours of this first solution are shown in 

Figure 7.3. Although the velocity distribution and the streamlines are reasonable, small oscillations in 

the velocity field can be seen, especially close the the bottom corners. But the pressure distribution 

has large unphysical oscillations, known as checkerboard pressure field in the literature. 

 

       

Figure 7.3 Streamlines and pressure contours obtained using GFEM with LBB-unstable      (linear) 

quadrilateral elements 

 

Second solution, shown in Figure 7.4 is obtained with the same 400 linear element mesh. However, 

this time GLS stabilization is applied. As seen, streamlines are smoother compared to the previous 

solution and the pressure field is not oscillatory. Maximum and minimum pressure values occur at 

the right and left top corners. 

 

Third solution, shown in Figure 7.5 is obtained using 400 LBB-stable      elements that use 9 

velocity nodes and 4 pressure nodes. Although the element number is the same as the previous 

solutions total number of unknowns is larger. Without GLS stabilization, MATLAB can solve the 

system of equations using the backslash operator without any singularity warning. Streamlines are 

almost identical to the ones obtained by the previous solution and the pressure variation is not 

oscillatory. Note that during the post-processing step, only the velocity values corresponding to 

element corners are used for simplicity, which introduces a certain amount of visualization error. 

 

 

 

 

 



ME 582 Finite Element Analysis in Thermofluids 
Dr. Cüneyt Sert 

 

7-12 
 

           

 

Figure 7.4 Streamlines, pressure contours and 3D plot of pressure field obtained using LBB-unstable 

     quadrilateral elements with GLS stabilization 

 

 

                  

Figure 7.5 Streamlines and 3D pressure field obtained for using GFEM with LBB-stable      

quadrilateral elements 
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A final solution for the lid-driven cavity problem is obtained using triangular elements. A non-uniform 

mesh of 864 triangles, generated by mesh2d code, is shown in Figure 7.6. This solution uses linear 

approximation for both pressure and velocity,  i.e., NENv = NENp = 3 together with GLS stabilization. 

Without GLS, this LBB-unstable element gives an oscillatory pressure field. For the same mesh of 864 

triangles, but with quadratic velocity approximation (NENv = 6), pressure oscillations can be avoided 

except for the regions very close to the top corners. 

 

 

                 
 

 

Figure 7.6 Streamlines and pressure contours obtained for Stokes solution using LBB-unstable linear  

triangular elements (NE = 864) with GLS stabilization 

 

 

Following comments can be made about the Stokes solutions of the Cavity problem: 

 

 LBB-unstable elements (linear triangles and quadrilaterals) provide oscillatory results with 

GFEM. It is important to test GFEM with LBB-unstable elements of finer grids to make a better 

conclusion. 

 

 Acceptable solutions can be obtained with LBB-unstable elements if GLS stabilization is used. 
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 LBB-stable elements with quadratic velocity and linear pressure approximation provide non-

oscillatory solutions without stabilization. 

 

 Cavity problem is a challenging benchmark problem due to the singularities at the top corners 

where fixed sides walls meet with the moving top wall. At these corners there are sharp velocity 

and pressure changes. This difficulty can be seen clearly by the different pressure scales 

obtained in different solutions. Each solution provides quite different minimum and maximum 

pressure values, but these extreme values occur only very close to the top corners of the cavity. 

Away from these corners pressure is almost constant and this behavior can be captured 

correctly by all acceptable solutions. However, extreme pressure values at the top corners can 

only be captured at various orders of precision with different solution techniques. 

 

 2D, steady Stokes solutions are not very demanding computationally. For meshes of less than 

1000 elements that are tried, solution can be obtained in less than 10 seconds on a standard PC. 

 

 Comparing the results of different solutions just by looking at the contour plots or streamlines 

may be misleading. It is better to make more quantitative comparisons, like velocity and/or 

pressure distributions across different cross sections of the flow field. Comparisons should also 

be made against credible solutions of the literature. These kind of detailed comparions will be 

done in the following sections for N-S solutions. 

7.6 Sample Stokes Solution – Flow Over a Cylinder 

 

Consider the flow over a 2D cylinder with the problem geometry and BCs shown in Figure 7.7. The 

outside box has a size of 20x10 units. Cylinder has a diamater of 1 and its origin is at (5,5). 

 

 

 

 

 

 

 

 

 

 

Figure 7.7 Geometry and BCs for the flow over a cylinder problem 

 

Uniform flow of magnitude    is specified at the left inlet. Top and bottom walls are specified to be 

sliding with the inlet velocity to minimize the effect of walls on the flow field. No slip BC is provided 

on the cylinder surface by fixing both velocity components to zero. Finally the pressure is fixed to be 

zero at the center point of the outlet. 

  

𝑢  𝑈𝑜 
𝑣     

(0,0) 

𝑥 

𝑦 

Diameter: D = 1 
Center : (5,5) 

(20,10) 𝑢  𝑈𝑜     𝑣     

𝑢  𝑈𝑜     𝑣     

Pressure at 

point (20,5) is 

set to zero 
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Size of the box and the placement of the cylinder within the box are important. The box should be 

wide enough to simulate external uniform flow passing over the cylinder. Also the distance between 

the cylinder and the inlet and outlet boundaries should be large enough so that uniform inlet and 

fully developed outlet BCs can be applied correctly. 

 

The task is to obtain the velocity and pressure field around the cylinder. Solutions will be done for 

three different    values of 0.1, 1 and 10. The mesh shown in Figure 7.8 is used for all simulations. It 

is created using mesh2d software and has 2090 elements. Elements are clustered around the 

cylinder, with smaller elements used in the wake region. 

 

 
 

 

Figure 7.8 Triangular mesh of 2090 elements used for the flow around a 2D cylinder. Bottom plot 

shows the close up view around the cylinder. 
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Solutions obtained for three different free stream speeds are given in Figure 7.9. They are obtained 

using LBB-stable elements with 6 velocity and 3 pressure nodes without any stabilization. As seen all 

three solutions have the same streamline pattern. Pressure contours are also identical, but the 

pressure scales are different. As the free stream velocity is increased by a factor of 10, scale of the 

viscous terms increase by a factor of 10, and therefore pressure values that should balance viscous 

forces in the momentum equations also incresae by a factor of 10. 

 

 
 

 
 

 

Figure 7.9 Streamlines and constant pressure lines for Stokes solution of flow over a cylinder. 

Freestream velocities are 0.1 (top), 1 (middle) and 10 (bottom). 
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It is of course not physical to get the same pressure and velocity field patterns no matter what we 

use for the free stream velocity, but this is a drawback of the Stokes formulation. Flow fields look 

similar to those of potential flow theory and no matter what we use for the free stream velocity it is 

not possible to see flow seperation. Later we'll perform Navier-Stokes simulations with the 

parameters that we used here and will obtain different and more physical results. 

7.7 GFEM of 2D N-S Equations in Primitive Variables 

 
Two-dimensional, steady, incompressible, viscous flows are governed by the following Navier-Stokes 

equations written in the Cartesian coordinate system 
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Similar to what we did for Stokes equations, momentum equations can be put into the following 

form by the help of the continuity equation. 
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The difference between these equations and the Stokes equations, studied previosuly in Section 7.2, 

are the nonlinear terms. Due to the nonlinearity, the set of algebraic equations that will be obtained 

at the end of this section can not be solved in a single shot, but an iterative solution is necessary 

(similar to finding roots of a nonlinear function using an iterative method such as Newton-Raphson). 

In such an iterative solution nonlinear terms can be linearized in a number of different ways. The 

simplest possibility, which will be used in this section, is known as Picard linearization, in which the 

nonlinear terms are replaced by 
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New variables    and    are known velocity component values from the previous iteration. Although 

this linearization is simple to implement, its convergence is slower than the more commonly used 

Newton linearization, which will be discussed later. 

 

Obtaining weak form of the N-S equations is very similar to the procedure followed for the Stokes 

equations. We first form the weighted integral forms of the equations and apply integration by parts 

to the terms of the momentum equation with second derivatives and the pressure terms. The 

resulting elemental weak form is 
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To be consistent with the formulation used for the Stokes equations, continuity equation is 

multiplied with minus one. Substituing the approximate forms of the unknowns as summations of 

unknown nodal values multiplied with shape functions and replacing the weight functions by proper 

shape functions we get the following GFEM formulation 
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which can be written in the following form 

 

[

[   ] [   ] [   ]

[   ] [   ] [   ]

[   ] [   ] [   ]

]
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{ }
{ }
{ }

}
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{  }

{  }

{  }

}

 

                                            

 

where the submatrices except     and     are the same as the ones derived previously for the 

Stokes equations (See Eqn (7.13)).     and     now include the nonlinear terms as shown below 

 

   
   ∫ [   

   
 

  

   
 

  
        

   
 

  

   
 

  
           

 
   

 

  
           

 
   

 

  
]    

 

  
                    

 

   
   ∫ [  

   
 

  

   
 

  
         

   
 

  

   
 

  
           

 
   

 

  
           

 
   

 

  
]    

 

  
                    

 

Due to the existence of the nonlinear terms, elemental system and therefore assembled global 

system becomes unsymmetric. 

7.8 Newton Linearization 

 
GFEM formulation provided in the previous section made use of the Picard linearization for the 

nonlinear terms. Picard linearization is simple but it has a slower convergence rate, compared to the 

Newton linearization that will be discussed in this section. 

 

In Newton linearization nonlinear terms of the momentum equation are linearized in the following 

way 
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Upon convergence, i.e. as  ⃗  approaches to   
⃗⃗  ⃗, extra terms on the left and right hand sides will cancel 

out and the original N-S equations will be obtained. Obtaining the elemental system of this equation 

coupled with the continuity equation is left as an exercise for you. 

7.9 GLS Stabilization of N-S Equations for Linear Triangles and Quadrilaterals 

 

This is similar to the one discussed in Section 7.4 for Stokes equations. GLS stabilization will bring the 

following extra integrals 
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Here we made use of   
⃗⃗  ⃗ as the velocity vector of the previous iteration in the context of Picard 

linearization. Similar to the Stokes equations case, for the use of 3-node triangular or 4-node 

quadrilateral approximation of velocity second order velocity derivatives of viscous terms vanish and 

GLS contributions simplify as follows 

G S terms of   momentum         ∫  [    
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These GLS integrals will bring modifications to the following elemental sub-matrices and sub-vectors, 

where the matrices and vectors with subscript GFEM are the ones given in Eqns (7.13) and (7.29) 
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Stabilization parameter   is the same as the one defined previously in Eqn (7.22) 
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7.10 Sample N-S Solution – Lid-Driven Cavity Problem 

 

Again we'll start with the lid-driven cavity problem solved previously using the Stokes equations. This 

problem will be solved for various different Reynolds numbers by changing the viscosity of the fluid. 

Size of the cavity,  lid velocity and density of the fluid will always be kept as zero. 

 

First,        solution shown in Figure 7.10 is obtained using the mesh shown in Figure 7.6. LBB-

stable      element is used without any stabilization. Solution matches perfectly with Ghia's 

benchmark results [3]. Two small vortices are observed at the bottom corners of the cavity. 

 

 

         

Figure 7.10 Streamlines and   velocity component profile along       for       . Mesh has 864 

     triangles. Red squares are reference results of Ghia [3]. 

 

When the same mesh is used to obtain a solution for        , the comparison with the reference 

solution was not perfect as seen in Figure 7.11. A finer mesh of 1320 triangular elements is used to 

get an improved solution. Compared to the previous lower    solution, it is seen that as the 

Reynolds number increases vortices at the bottom corners get larger and the core of the centerline 

vortex moves towards the center of the cavity. 

 

Finally cavity solution for        , shown in Figure 7.12 is obtained.  Similar to the previous 

        case,864 element mesh provided unacceptable results. A new mesh of 4840 elements is 

created and it provided results with acceptable accuracy. As seen from Figure 7.12, at         a 

new vortex is formed close to the upper left corner of the domain. 
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Figure 7.11 Streamlines and   velocity component profile along       for        . Streamline 

plot is obtained with a mesh of 1320      triangles. Red squares are reference results of Ghia [3]. 

 

 

 

  

Figure 7.12 Streamlines and   velocity component profile along       for        . Streamline 

plot is obtained with a mesh of 4840      triangles. Red squares are reference results of Ghia [3]. 

 

 

In order to get a better feeling of the flow fields, Figure 7.13 show 3D plots of   and   velocity 

components for all three Reynolds numbers simulated in this part. Oscillations are seen close to the 

top corners of the cavity due to sudden velocity and pressure changes. Note that no stabilization is 

applied to any of these solutions. 

 

 

 

NE = 864 

NE = 1320 

NE = 864 

NE = 4840 
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Figure 7.13 3D views of   (left) and   velocity fields (right) 

for        (top),         (middle) and         (bottom)  
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N-S solutions of the lid-driven cavity problem can be summarized as follows 

 

 With fine enough meshes LBB-stable elements without any stabilization provide acceptable 

solutions. 

 Accurate solution of higher Reynolds number flows require a finer mesh compared to lower    

flows. 

 The finest mesh used in these solutions has 4840 elements with 6 velocity and 3 pressure nodes. 

This mesh has a total of 2573 pressure and 9985 velocity nodes, which makes a total of 22,543 

unknowns. Global stiffness matrix is a square matrix of size 22,543 x 22,543. If stored in full form 

this matrix requires close to 4 GB of memory. With a standard PC it is difficult to make such a 

memory allocation. Instead of storing this matrix in full form a sparse matrix storage technique 

is utilizied. Global stiffness matrix mentioned above has 603,762 nonzero enties, i.e. only 0.12 % 

of all its entries are nonzero as s own in Figure  .14 o tained wit  MA  A ’s spy command. 

When stored in sparse form global stiffness matrix requires less than 10 MB of memory. For 

sparse storage MA  A ’s  uilt-in coordinate storage format is used. 

 Although provides extensive memory savings, the use of sparse storage makes coding more 

complicated. An simpler alternative is to change the global node numbering such that the 

bandwidth of the stiffness matrix reduces. This reordering can automatically be done using 

MA  A ’s symrcm command. The resulting banded matrix shown in Figure 7.14 has a 

bandwidth of 1078, and its storage requires 185 MB of memory, which is managable for this 2D 

problem, but this number can be very high for large 3D problems. 

 

 

 

Figure 7.14 Sparsity pattern of the original (left) stiffness matrix for a mesh with NE=4840, 

NN=9985. Sparsity pattern of the banded (right) stiffness matrix obtained by renumbering the 

glo al nodes using MA  A ’s symrcm command. 
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 Iteration numbers and solution times spent for Picard iterations of all the simulations performed 

for the lid-driven cavity problem are given in Table 7.2. Convergence check is done by comparing 

velocity components of the current iteration with the values of the previous iteration and the 

simulation is stopped if the absolute difference for both velocity components are less than 

    .  

 

Table 7.2 Computational performance of five simulations performed for the cavity problem 
 

   NE (    ) Ndof 
Time Spent for Picard 

Iterations (s) 

Number of 

Iterations 

Time Per 

Iteration (s) 
      

100 864 4151 7.6 11 0.7 
      

1000 864 4152 19.8 29 0.7 

1000 1320 6263 27.3 26 1.1 
      

3200 864 4151 95 134 0.7 

3200 4840 22543 277 68 4.1 

 

As seen from this table, time required per iteration increases as the mesh gets finer, as 

expected. An interesting observation is that for high Reynolds numbers coarse mesh solutions 

require more iterations to converge. Even the finest mesh of this 2D problem took less than 5 

minutes to converge on a standart PC. 

7.11 Sample N-S Solution – Flow Over a Cylinder 

 

Let's now revisit the flow over a cylinder problem that we previously solved using Stokes equations. 

Using the same parameters as we used previously, i.e. keeping cylinder diameter, density and 

viscosty constant at 1 and changing freestream speed    as 0.1, 1, 10, we'll simulate flows with 

Reynolds numbers of 0.1, 1 and 10. Same mesh of 2090 triangular elements, shown in Figure 7.8, is 

used for all the runs. Pressure at the center of the exit boundary is equated to zero. 

 

Results are shown in Figure 7.15 as pressure contours and streamlines. Comparing these results with 

the ones obtained previously by solving Stokes equations (Figure 7.9) reveal important differences. 

Lowest Reynolds number case provides a pressure contour pattern that is the most similar to those 

obtained by Stokes equations. But as the Reynolds number gets larger pressure contours become 

totally different than the ones obtained for Stokes equations. For       case flow separates and 

circulation bubbles form in the wake of the cylinder, which were not observed for the Stokes 

solution. 
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Figure 7.15 Pressure contours and streamlines for flow over a cylinder for Reynolds number of        

0.1 (top), 1 (middle), 10 (bottom) 

 

It is known that this flow field is steady and symmetric with respect to the horizontal centerline of 

the cylinder upto a Reynolds number of about 50. For higher Reynolds numbers flow becomes 

unsteady (actually time periodic) with the well known von Karman vortex street forming in the wake 

of the cylinder. 

 

As mentioned previously size of the box is important in specifying uniform inflow and fully developed 

outflow BCs properly. Let's perform a new simulation, but this time use a twice larger box around the 
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cylinder. The width and length of the new box is 20x50 and the cylinder is located 20 and 30 units 

away from the inlet and outlet, respectively. 

 

We simulated only       case with this new geometry and obtained the results shown in Figure 

7.16. This result should be compared with the last plot of Figure 7.15. As seen pressure scale changed 

considerably. This is an indication that previous domain was not large enough for proper 

specification of selected BCs. Is the new one large enough? To be sure we need to generate an even 

larger one and compare the results of it with the one given below. 

 

According to Figure 7.16 pressure at the exit boundary seems to be not constant. But actually the 

range of pressure at the exit boundary is                 , which is a small change compared to 

the actual range of pressure seen in the legend of Figure  7.16. Of course it is always possible to set 

the pressure of all the nodes on the exit boundary to zero. 

 

As a conclusion, for the proper simulation of external uniform flow passing over an object we need to 

locate the outside box far enough away from the object. 

 

 

 

Figure 7.16 Pressure contours for       obtained with a larger (20x50) box around the cylinder. 

 

Pressure distribution around the cylinder is important for the estimation of drag force. For the 

solution given in Figure 7.16 pressure variation around the cylinder is given in Figure 7.17. As seen 

pressure is maximum at the front side stagnation point. It drops up to        and then starts to 

recover. After this point pressure gradient in the main flow direction is positive (adverse pressure 

gradient) and the flow separates. Overall pressure on the back side of the cylinder is much smaller 

compared to that of on the front side, creating a net pressure drag. The data can also be expressed 

as the non-dimensional                  
  , where ,                  ,     and 

    . 
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Figure 7.17 Pressure distribution over the upper half of the cylinder for      . 

     and        correspond to front side and back side stagnation points of the cylinder. 

7.12 FE Formulation of the Energy Equation 

 

In Section 7.7 we obtained GFEM formulation of continuity and linear momentum equations, i.e. 

Navier-Stokes equations. In this chapter we'll add the following energy equation to this set. 

 

 onser ation of Energ                   ( ⃗   )                                                                

where    is the specific heat at constant pressure,   is the conductivity of the fluid and   is the 

viscous dissipation term, which is negligibly small in many practical applications.  It'll also be 

neglected in the current FEM formulation. 

 

When we consider the viscosity of the fluid to be constant, i.e. not a function of temperature, Navier-

Stokes equations become decoupled from the energy equation. In other words for incompressible 

flows it is possible to first solve the Navier-Stokes equations and obtain the velocity field, and then 

use it in the energy equation to get the temperature distribution. It is worth to note that the energy 

conservation equation is the same as the advection-diffusion equation that we studied in detail in 

Chapter 6. 

 

For temperature storage one can use the nodes where velocity components are stored. Weight 

function    used previously for the  -component of the momentum equation can be used for the 

discretization of the energy equation. After obtaining the weighted residual statement and applying 

integration by parts to the diffusion term we get the following elemental weak form 
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where   and   are the already known velocity field components obtained by the solution of N-S 

equations.    is the secondary variable given as 
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    (
  

  
   

  

  
  )                                                                  

which corresponds to the heat flux crossing the boundaries. For the approximation of the scalar 

temperature field we can make use of the shape functions     already derived and used for velocity 

components 

        ∑           

    

   

                                                             

Using this aproximate temperature field in the elemental weak form we get the following elemental 

stiffness matrix. 
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Elemental force vector is identically equal to zero since we neglected the viscous dissipation term 

and internal heat generation. 

7.13 Sample Heat Transfer Problem – Deveoping Flow Between Parallel Plates 

 
Consider the hydrodynamically developed, but thermally developing flow in a channel formed by two 

infinitely wide parallel plates as shown in Figure 7.18. Channel height and length are 1 and 10, 

respectively. Flow enters the channel with parabolic velocity profile and uniform temperature. It 

heats up by the plates that are kept at fixed temperature. Fluid properties are taken to be constant 

costant as shown in the figure. Three simulations are performed with three different conductivity 

values of  ,      and     . Results are shown in Figures 7.19 and 7.20. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18 Thermally developing flow between parallel plates 
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Figure 7.19 Temperature contours of thermally developing flow between parallel plates for 

    (Top),        (Middle) and        (Bottom) 

 

 

 
 

Figure 7.20 Temperature variation along the channel at       for  

    (Solid, black),        (Dashed, blue) and        (Dashed-dotted, red) 

 

 

As seen in Figures 7.18 and 7.19, as the conductivity decreases, Prandtl number and therefore Peclet 

number increases. It means advection heat transfer becomes dominant compared to conduction 

heat transfer and thermal boundary layer develops in a slower rate.  

7.14 Sample Heat Transfer Problem – Heat Exchanger 

 

Consider the heat exchanger given in Figure 7.21, which is half of an actual exchanger. Water 

(                                                        ) enters the gray 

colored region from the left with a parabolic velocity profile and maximum velocity of         . 
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Inlet water temperature is     . Water exits the domain from the right boundary. A warmer fluid at 

     passes through the circular tubes. 

 

No slip BC is applied on the circular tubes with fixed temperature of     . Bottom boundary is the 

symmetry plane of the heat exchanger.     and         boundary conditions are applied at 

the bottom boundaries. Pressure is fixed to be zero on the exit plane. On the top surface of the heat 

exchanger no slip BC for velocity and insulated thermal BC are provided. 

 

 

 
 

Figure 7.21 Geometry of the heat exchanger problem 

 

 

A mesh of 2824 triangular elements is used for the simulation. Obtained solution is shown in Figure 

7.22. Fluid heats up as it passes over the circular tubes and at the exit minimum and maximum 

temperatures are calculated to be        and     , respectively. 

 

 
 

Figure 7.22 Streamlines and temperature contour for the heat exchanger problem. 

 

 

Same problem is solved for a second time by increasing the flow rate by a factor of 10, i.e. maximum 

velocity of the inlet velocity profile is         . For this faster flow heat transfer from the circular 

tubes is less as seen in Figure 7.23. At the exit, minimum and maximum temperatures are calculated 

to be        and       , respectively. As seen, most of the incoming fluid follows a path close to 

the top wall, by-passing the circular tubes. For this faster flow a different tube arrangement could 

perform better. For example removing the tube closest to the inlet or putting tubes close to the top 

wall can be tried.  
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Here it is important to remember that after a certain critical speed flow over the tubes might become 

unsteady and a steady solution that we are performing here might result in erronous solutions. 

 

 

 
 

Figure 7.23 Streamlines and temperature contour for the heat exchanger problem with 10 times 

larger flow rate compared to the original solution. 

7.15 Profiling the Code and Memory Usage 
 

MATLAB comes with a tool called profiler. When you run a code using this tool a report will be 

generated showing how much time each function and each line of the code is taking. By this way it is 

possible to detect the time consuming bottlenecks and think about improvements. 

When we profile the solver for the heat exchanger problem described in the previous section         

(NE = 2824, NCN = 1652, NN = 6130, NENv = 6, NENp = 3) we get the result shown in Figure 7.24. This 

figure shows the top part of a longer list. Profiling the code took a total of 58 seconds. This is longer 

than the actual run time of the code, because during profiling additional tasks are done. 

According to Figure 7.24 calcElemSys() function is the most time consuming one. It took 14.2 s 

of 58 s. Second most tie consuming function is assemble() with 12.4 s. Both of these functions are 

called 19,768 times. 3rd and 4th most time consuming functions are called only once and they are 

related to sparse storage. solve() function is the 5th on the list with 4.4 s, which is about 8 % of all 

run time. It is called 7 times because there were 7 Picard iterations in this solution. To conclude, 

constructing the elemental systems and assembling them are the most time consuming parts of the 

solution, not the actual solution of the global system. Note that there is also a function called 

solveEnergy() used for the linear algebraic system solution of the energy equation. It is not 

even in the list. It is called only once and it takes only 0.1 s. 
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Figure 7.24 Profiling result of heat exchanger problem with NE = 2824, NN = 6130 

 

calcElemsys() function takes most of the time. When you click on the function name more 

details about this function is presented, as seen in Figure 5.25. Top five most time consuming lines of 

the function are shown. It is possible to scroll down and see how much time other lines are taking.  

 

Figure 5.25 Profiling result of the function calcElemSys() for the heat exchanger problem 
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Memory usage of the code is as important as the time it takes to run it. As mentioned earlier, by 

storing the global stiffness matrix of the N-S system and the energy equation system as sparse 

matrices we are able to run relatively big 2D problems. For the heat exchanger problem with            

NE = 2824, NCN = 1652, NN = 6130, NENv = 6, NENp = 3, there are 12,260 velocity unknowns, 1652 

pressure unknowns and 6130 temperature unknowns. Totally there are 20,042 unknowns. Most 

memory demanding variables of this solution are listed below 

 

soln structure     : 11,566,812 Bytes 

elem structure     : 10,754,432 Bytes 

A variable inside solve() function  :  4,110,908 Bytes 

A variable inside solveEnergy() function :    759,296 Bytes 

coord variable     :     98,080 Bytes 

BC structure     :     56,666 Bytes 

 

Note that by default MATLAB stores all variables as double precision floating point numbers. To save 

memory, certain variables can be declared to be single precision numbers or integers. For example 

inside the most memory consuming soln structure there is another structure called Ksparse, which 

has arrays row and col. These arrays store integer values so they can be declared to be so. Another 

large variable is the KeKsparseMap matrix inside elem structure, which can also be defined as 

integer. 

7.16 Segregated Formulation (Pressure Correction / Projection Methods) 

 
In the formulation of Navier-Stokes equations discussed up to this point, all primitive variables,   ,   

and   are solved together in a single global system, which can be called a fully-coupled solution. Due 

to the weak coupling of pressure and velocity in incompressible flows this mixed formulation has 

couple of challenges as mentioned earlier. Most important of them is the zero entries located on the 

main diagonal of the stiffness matrix. Due to these zeros, iterative solution techniques are known to 

converge very slowly and they are not preferred. However, it is also known that as the size of the 

problem (number of the unknowns) gets larger direct solvers turn out to be disadvantageous in 

terms of both computation time and memory requirements. Most practical 3D simulations are 

beyond the capabilities of direct solvers. If we want to make use of iterative linear system solution 

techniques (do not get confused with the iterations that we are doing due to the linearization of the 

nonlinear terms of the Navier-Stokes equations) we need an alternative formulation. 

  

In the Finite Difference and Finite Volume community it is a quite common practice to solve 

incompressible Navier-Stokes equations in a segregated way, i.e. velocity components and pressure 

are not assembled into a single system of global equations. This type of solution is popularized by 

Patankar by the name of SIMPLE (Semi Implicit Method for Pressure Linked Equations) and many of 

today's Finite Volume based commercial CFD software make use of this formulation. There are 
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several variants of SIMPLE. These segregated solution methods are also known as pressure correction 

methods or projection methods. 

 

Fully-coupled formulation of 2D steady, incompressible Navier-Stokes equations result in the 

following system of global equations 

 

[

[   ] [   ] [   ]

[   ] [   ] [   ]

[  
 ] [  

 ] [ ]

] {

{ }

{ }
{ }

}  {

{  }

{  }

{  }

}                                                

 

Here we assumed that nonlinear terms are already included in [   ] and [   ] matrices using for 

example the Picard iteration technique. Sizes of the submatrices and subvectors of Eqn (7.36) 

depend on the number of velocity and pressure unknowns of the problem. Right hand side of the 

third equation, which is the continuity equation, is not zero due to the possible contributions of non-

zero boundary conditions for specified velocities. Such BC contributions may also exist in {  } and 

{  } vectors. Segregated solution technique described below is based on the discussion of reference 

[4]. 

 

Equation (7.36) can also be written in the following open form 

 

[   ]{ }  [   ]{ }  [  ]{ }  {  }                                                          

 

[   ]{ }  [   ]{ }  [  ]{ }  {  }                                                         

 

[  
 ]{ }  [  

 ]{ }  {  }                                                                                 

 

or in the following rearranged form 

 

[   ]{ }  [  ]{ }  {  }  [   ]{ }  {  }                                                    

 

[   ]{ }  [  ]{ }  {  }  [   ]{ }  {  }                                                   

 

[  
 ]{ }  [  

 ]{ }  {  }                                                                           

 

Note that new defined {  } and {  } are different than the original {  } and {  }. In a segregated 

formulation we think that the first equation can be used to solve for { }, the second one can be used 

to solve for { } and the last one is used to solve for { }. The problem is that pressure does not exist 

in the last equation. Therefore we need to combine and arrange these equations to get a new 

equation that can be solved for pressure. Also note that since all these three unknowns ( ,   and  ) 

depend on each other, segregated solutions are iterative by nature (again do not get confused with 

nonlinear iterations or iterations of an iterative linear system solver, they are all different things) and 

they start from an intial guessed solution. 
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To obtain the missing equation for pressure consider Eqn (7.38a) written for iteration   and     

(Brackets are droped for simplicity) 

 

    
       

     
    

         and            
         

       
      

                    

 

Left multiply Eqns (7.39) with   
    

   and subtract the one for iteration   from the one for iteration 

   . What we get is 

 

  
 (       )    

    
    ( 

      )     
     

      
                                   

 

Now write equations similar to the ones in Eqn (5.24) for the y-momentum equation. Left multiply 

them with   
    

   and subtract from each other to get 

 

  
 (       )    

    
    ( 

      )     
     

      
                                   

 

Add Eqns (7.40a) and (7.40b) 

 

 

  
        

      (  
      

   )  (  
    

       
    

    )( 
      ) 

    
  (  

      
 )     

  (  
      

 )                  

 

Note that superscripts   and     denote current and next iteration levels. This equation is used in 

an iterative loop and upon convergence the underlined term will approach to {  }  due to the 

continuity equation. Similarly upon convergence double underlined terms will approach to zero. 

Using these facts Eqn (7.41) can be simplified to 

 

(  
    

       
    

    )   
         

      
                                                  

 

where                 is an intermediate pressure difference between two iterations. After 

obtaining        , we use it in Eqns (7.40a) and (7.40b) to obtain intermediate velocities 

 

             
      

                                                                     

 

             
      

                                                                     

 

 

Step 1 : First step of the segregation solution process is the solution of Eqn (7.42a) to obtain 

intermediate pressure difference 

 

Here it is important to note that calculating the inverse of     and     so that the left hand side 

matrix of Eqn (7.42a) can be formed is problematic, because inverse of a banded matrix is a full 

matrix, needing excessive storage. Remember the original motivation of seeking a segregated 

formulation; being able to use an iterative linear system solver so that run time and memory 
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requirements can be reduced. For this purpose instead of taking the inverses of original     and     

matrices it is preferred to take the inverses of other representative matrices that are easier to invert. 

This simplification does not alter the nature of the formulation, but it results in slower convergence 

of the iterations. Usually diagonal matrices formed by the diagonal entries of     and     are used 

for this purpose 

 

 ̃   diag                  ̃   diag (   )                                                  

 

When these diagonal matrices are used in Eqns (5.27a) we get the following equation that should be 

solved in Step 1. 

 

(  
  ̃  

       
  ̃  

    )   
         

      
                                           

 

 

Step 2 : Use Eqns (7.42b) and (7.42c) (but with diagonal matrices) to get        and       . 

 

           ̃  
      

                                                                

 

           ̃  
      

                                                                

 

 

Also update pressure as 

 

                

 

Since segregated solution is an iterative process         has considerable error in it and the above 

pressure updating is usually relaxed as follows to obtain a converging solution 

 

                
                                                               

 

where        is the pressure relaxation factor. Values close to zero provide no relaxation and 

values close to 1 provide full relaxation, ie. no change from previous iteration. 

 

Step 3 : After obtaining the pressure for the new iteration we can now solve momentum equations to 

get new values for velocity components. Using Eqn (5.23a) 

 

        
  (      

   ) 

 

which can also be relaxed as follows 

 

     [(
  

    
)  ̃      ]

  

[      
    (

  

    
)  ̃   

     ]                      
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Upon convergence        and      will be the same and underlined terms of the above equation will 

cancel out. Similar to pressure relaxation, the role of velocity relaxation is again to control the speed 

of change of variables the iterative solution process. Also the addition of (
  

    
)  ̃   makes     more 

diagonally dominant and therefore makes this system more suitable to be solved with iterative 

solution techniques. 

 

Step 4 : Repeat step 3 but this time use Eqn (7.38b) to obtain   velocities at new iteration level can 

be obtained. 

 

     [(
  

    
)  ̃      ]

  

[      
    (

  

    
)  ̃   

     ]                        

 

 

This 4 step process should be repeated until convergence for all variables is achieved. It is apparent 

that the solution should start with an initial guess. Note that Picard iteration that is used for fully-

coupled solution of previous sections is already included in the iteration loop of this segregated 

solution approach, therefore we do not need an extra loop for linearization of nonlinear terms. 

7.17 Matrix Free, Element By Element (EBE) Solution 

 
In the segregated solution approach described in the previous section computationally intensive 

tasks are the solution of pressure equation, Eqn (7.44), and solution of momentum equations, Eqns 

(7.47) and (7.48). These equations can be solved using direct or iterative techniques. Segregated 

solvers are designed for this new iterative solver option, which is not possible in the fully-coupled 

solutions. 

 

Pressure equation, Eqn (7.44), is symmetric and positive-semidefinite, allowing the use of a popular 

iterative method named Conjugate Gradient (CG). Momentum equations, Eqns (7.47) and (7.48), on 

the other hand are not symmetric and they can be solved using Conjugate Gradient Squared (CGS) or 

Generalized Minimum Residual (GMRES) methods. 

 

For all these iterative system solution methods, main task is the multiplication of the square right-

hand-side matrix with a vector. In Element By Element (EBE) solution approach this matrix vector 

multiplication is done using element level matrices and global matrices are not assembled at all, 

hence the name matrix-free solution. By avoiding the assmerbly of global systems EBE solutions 

result in enormous memory savings. fullfilling the initial motivation of using segregated solution 

technique. 

7.18 Other FE Formulations of Incompressible N-S Equations 

 

In previous sections we discussed mixed (fully-coupled) and segregated FE formulations of 

incompressible N-S equations. In practice the mixed formulation is not preferred due to its high 
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memory requirement and stabilitiy issues, and when used, almost always it is supported by a 

stabilization technique such as SUPG. Although the idea of segregated solution is very popular in 

finite volume solvers, it is also not used heavily by the finite element community. There are many 

other alternative formulations for the solution of incompressible flows. Some of them are penalty 

method [2], least-squares FEM [5], artificial compressibility method [6], fractional step method [7] 

Taylor-Galerkin method [6] and characteristic based split method [8]. 

7.19 Exercises 

 

E-7.1. Implement the Newton linearization technique described in Section 7.8 to the 2D N-S code and 

compare its convergence speed with the Picard technique. 

 

E-7.2. Solve the lid-driven cavity problem for         and compare the results with a reference 

solution. 

 

E-7.3. For the flow over a cylinder problem studied in Section 7-11 one of the most important results 

is the drag coefficient   , which is a nondimensional drag force. In order to calculate it both the 

shear drag and the pressure drag over the cylinder needs to be calculate. Perform    calculation for 

        and   , and compare your results with the ones available in the literature. 

 

E-7.4. A popular benchmark problem for incompressible N-S solvers is the flow over a backward 

facing step. Do a literature survey for this flow and find reference solutions, perform simulations and 

compare results with the available ones. 

 

E-7.5. One simple suggestion to increase the heat transfer rate of the heat exchanger problem 

discussed in Section 7.14 is to use more tubes with smaller diameter. Perform new simulations with a 

number of alternative designs based on this concept. Compare exit temperatures. Also compare the 

pressure drop (pressure difference between the inlet and the exit) and evaluate new designs from 

this perspective. 

 

E-7.6. Use the 2D N-S code to study the boundary layer development over a flat plate. Select a 

properly sized problem domain, boundary conditions and flow and fluid properties. Generate a good 

enough mesh and obtain the developing laminar boundary layer over the flat plate. Compare the 

growth rate of the boundary layer and the velocity profiles inside the boundary layer with the known 

analytical solution. Perform the solution for a range of (not for a single) Reynolds number. 

 

E-7.7. In this chapter we only considered 2D flows in the Cartesian coordinate system. 2D, 

axisymmetric flows in the    plane of the cylindrical coordinate system are also frequently 

encountered. Work on the formulation of axisymmetric flows and modify the N-S solver accordingly. 

Test the new code for the developing laminar flow in a constant diameter pipe problem. Consider a 

long enough pipe with uniform inlet velocity and let the flow develop into the analytically known 

parabolic profile. Calculate the constant rate of pressure drop in the fully developed region and 

compare with the known analytical value. 
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